
J. Fluid Mech. (2000), vol. 420, pp. 259–276. Printed in the United Kingdom

c© 2000 Cambridge University Press

259

Miscible rectilinear displacements with gravity
override. Part 2. Heterogeneous porous media

By E M M A N U E L C A M H I, E C K A R T M E I B U R G†
AND M I C H A E L R U I T H

Department of Aerospace and Mechanical Engineering, University of Southern California,
Los Angeles, CA 90089-1191, USA

(Received 7 January 2000 and in revised form 16 May 2000)

The effects of permeability heterogeneities on rectilinear displacements with vis-
cosity contrast and density variations are investigated computationally by means
of direct numerical simulations. Physical interpretations are given in terms of mu-
tual interactions among the three vorticity components related to viscous, density
and permeability effects. In homogeneous environments the combined effect of the
unfavourable viscosity gradient and the potential velocity field generated by the hor-
izontal boundaries was seen to produce a focusing mechanism that resulted in the
formation of a strong vorticity layer and the related growth of a dominant gravity
tongue (Ruith & Meiburg 2000). The more randomly distributed vorticity associated
with the heterogeneities tends to ‘defocus’ this interaction, thereby preventing the
formation of the vorticity layer and the gravity tongue. When compared to neutrally
buoyant flows, the level of heterogeneity affects the breakthrough recovery quite dif-
ferently. For moderate heterogeneities, a gravity tongue still forms and leads to early
breakthrough, whereas the same result is accomplished for large heterogeneities by
channelling. At intermediate levels of heterogeneity, these tendencies partially cancel
each other, so that the breakthrough recovery reaches a maximum. Similarly, the
dependence of the breakthrough recovery on the correlation length is quite different
in displacements with density contrasts compared to neutrally buoyant flows. For
neutrally buoyant flows the resonant interaction between viscosity and permeability
vorticities typically leads to a minimal recovery at intermediate values of the corre-
lation length. In contrast, displacements with density contrast give rise to a gravity
tongue for both very small and very large values of this length, so that the recovery
reaches a maximum at intermediate values.

1. Introduction
The companion paper by Ruith & Meiburg (2000) (part 1) investigated displace-

ments of fluids of variable viscosity and density in a homogeneous porous medium.
Particular attention was paid to the dynamic interactions among the two associated
vorticity modes and the potential flow generated by the impermeable boundaries at
the top and bottom of the reservoir. This potential velocity component was found to
result in a ‘focusing’ effect, which locally amplifies the viscous fingering instability by
causing an increased flow rate near the top of the reservoir. This mechanism, which
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is responsible for the emergence of a narrow gravity tongue, was seen to dominate
the displacement in certain parameter regimes. It is then natural to ask how these
dynamic interactions will be modulated by the existence of heterogeneities in the
porous medium. This topic is addressed by the present investigation.

The understanding of constant density and viscosity flows in heterogeneous porous
media, the so-called tracer flow problem, has reached an advanced stage, see the
reviews by Dagan (1987); Koch & Brady (1988), as well as the discussion and
references provided by Tchelepi (1994). In the presence of viscosity and/or density
differences, the dynamics of displacement processes in heterogeneous media become
significantly more complex, due to the introduction of additional length and time
scales into the problem. Depending on the relative magnitude of these scales, the
interaction among the various physical mechanisms can be more or less pronounced.
Tan & Homsy (1992) as well as DeWit & Homsy (1997a, b) provide an interesting
example of this behaviour in their computational investigation of neutrally buoyant,
variable-viscosity rectilinear displacements in heterogeneous porous media. They show
that a resonant interaction between viscosity- and permeability-driven effects can
occur when these act on comparable length scales, with the result of minimal recovery
efficiency. The existence of this resonance phenomenon was confirmed by Chen &
Meiburg (1998b) for the quarter five-spot geometry, which is not an obvious result
since the length scale of the fingering instability increases continuously as the front
spreads from the injection well to larger radii.

The simulations by Tchelepi (1994) also address the problem of rectilinear flows in
heterogeneous media. This author performs extensive parameter variations in order to
outline the boundaries between ‘heterogeneity-dominated’ and ‘fingering-dominated’
displacements. The dependence of the recovery curves on the viscosity ratio as well as
on the properties of the heterogeneity field is documented, even past the breakthrough
point. His main findings are that the recovery decreases as the mobility ratio becomes
more unfavourable, and as the level of heterogeneity increases. Tchelepi does observe
a certain dependence on the transverse correlation length, but he does not comment
on the ‘resonance phenomenon’ described earlier by Tan & Homsy (1992). It seems
possible that this might be due to the properties of his numerical approach, which
does not resolve the detailed effects of physical diffusion/dispersion at the front. As a
result, the optimal coupling between the preferred wavelength of the viscous fingering
instability and the corresponding intermediate correlation length may not have been
captured. Further computational investigations that addressed viscous fingering in
the presence of permeability heterogeneities were conducted by Waggoner, Castillo
& Lake (1992), Sorbie et al. (1992), and Araktingi & Orr (1993). All of these authors
employ velocity–pressure formulations of the governing equations.

Tchelepi (1994) also conducts a number of large-scale simulations to investigate the
interplay of viscous, density, and permeability effects. He points out that the balances
among the associated forces can shift with time and location, and that the early stages
are usually dominated by the forces related to viscous and permeability effects. While
he does not systematically investigate the dependence of these interactions on the
correlation length and the level of the heterogeneities, he finds that the particular ran-
dom realization of the heterogeneity field can have a large influence on the properties
of the ensuing displacement. Specifically, he observes that for different heterogene-
ity fields characterized by identical global quantities, the recovery may or may not
depend monotonically on the ratio of viscous to gravitational forces. Both Tchelepi
(1994) as well as Moisses, Miller & Wheeler (1989) in their investigation of the
role of permeability heterogeneities base their simulations on the more conventional
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pressure–velocity formulation of the governing equations. As has been pointed out by
several authors, this form of the equations has the disadvantage of not allowing a clear
distinction between the effects of viscosity and density contrasts, and permeability het-
erogeneities. In this regard, the alternative streamfunction–vorticity formulation offers
certain advantages. The goal of the present investigation is then to fully resolve the dif-
fusive concentration profile at the front, and to analyse the mutual interactions among
viscosity-, permeability-, and density-driven effects in terms of their vorticity dynamics,
as a function of the fluid properties and the features of the heterogeneity field.

2. Governing equations
In the presence of a spatially varying normalized permeability field k = k(x), the

dimensionless governing equations derived in part 1 take the form

∇ · u = 0, (2.1a)

∇p = −µ
k
u− Gρ∇y, (2.1b)

∂c

∂t
+ u · ∇c =

1

Pe
∇2c, (2.1c)

µ(c) = eR(1−c). (2.1d)

The governing dimensionless parameters are Pe, G, R, and A, as defined and described
in part 1. In addition, the spatial distribution of the normalized heterogeneous
permeability field enters into the problem. It is characterized by correlation lengths
in the x- and y-directions, as well as by a variance, as will be explained below.

By proceeding analogously to part 1 and recasting the continuity equation and
Darcy’s law into the vorticity (ω) and streamfunction (ψ) formulation, we obtain

∇2ψ = −ω, (2.2a)

ω = −R∇ψ · ∇c− 1

k
∇ψ · ∇k +

Gk

µ
cx. (2.2b)

It is interesting to note that the vorticity equation (2.2b) now contains three compo-
nents that can interact with each other: in addition to the viscosity- and gravity-related
vorticity fields discussed in part 1, there now appears a contribution related to the
variations in the permeability field (Tan & Homsy 1992). In the following, we will
refer to these components as viscosity, gravity, and permeability vorticity, respectively.
The interaction between permeability and viscosity vorticity was analysed in detail by
Chen & Meiburg (1998b) for the plane quarter five-spot geometry, i.e. in the absence
of density differences. To our knowledge the coupling between gravity and perme-
ability vorticities, and the ways in which gravity vorticity modulates the interaction
between permeability and viscosity components, has not yet been investigated. A
first interesting observation from the above equations is that the local permeability
appears in the numerator of the gravity vorticity. This indicates that, in contrast to
the homogeneous case analysed in part 1, the integral over the gravity vorticity, i.e.
the gravity circulation

ΓG =

∫
S

ωG dS, ωG =
Gk

µ
cx (2.3)

is no longer constant in time, and instead can vary as the concentration front reaches
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regions of different local permeability values. This raises the possibility for the
gravity vorticity to interact with the other vorticity components in a fundamentally
different way, compared to homogeneous flows. It is particularly noteworthy that the
gravity vorticity term contains the combination k/µ, i.e. the mobility. Since fluid of
low viscosity will preferentially move into regions of high permeability, the gravity
vorticity may reach locally large values as the concentration front moves through
areas of high permeability. This suggests that the predominantly one-way coupling
between gravitational and viscous vorticity components (as discussed in part 1) may
be more two-way in nature in the presence of permeability heterogeneities. The study
of this interaction will be a main focus of the present investigation.

Boundary and initial conditions for the numerical simulations are set correspond-
ingly to part 1. The numerical solution technique is identical to part 1 as well, i.e.
it employs a Fourier series approach in the streamwise direction (Gottlieb & Orszag
1977), sixth-order compact finite differences (Lele 1992) in the vertical direction, and
an explicit third-order Runge–Kutta time-stepping scheme (Wray 1991).

2.1. Permeability field

In order to generate the desired statistical distribution of the permeability field, we
use an algorithm provided by Shinozuka & Jen (1972). This algorithm was employed
successfully by Tan & Homsy (1992) for rectinilear flows without density differences,
as well as by Meiburg & Chen (1998b) for the quarter five-spot geometry. It yields the
permeability field k(x) as the exponential of a random function f(x), whose Gaussian
distribution is characterized by the variance s and the covariance Rff . The latter in
turn depends on the spatial correlation scales lx in the longitudinal, and ly in the
transverse direction. With 〈, 〉 indicating the autocovariance, we thus have

k(x) = ef(x), (2.4a)

〈f, f〉 = s2Rff(x), (2.4b)

Rff = exp

(
−π
[(

x

lx

)2

+

(
y

ly

)2
])

. (2.4c)

Of course, this model is not be applicable to all porous media, as the heterogeneities
in some materials may obey different statistical laws. In order to be able to apply the
same numerical approach as in part 1 of the present investigation, we demand kz = 0
at the inflow and outflow boundaries. This choice is justified by the observations
made in part 1, as well as by Tchelepi (1994), that the outflow boundary affects the
nature of the flow only over a very short distance in the upstream direction. At the
upper and lower boundaries of the domain, we specify ky = 0, which allows us to
extend the high-order numerical discretization all the way to these boundaries. These
boundary conditions of vanishing normal derivative are implemented in the same
way as described in Chen & Meiburg (1998b). In the present investigation, we employ
permeability heterogeneity fields with correlation lengths ranging from 0.02 to 0.2,
and variances up to s = 0.8. These parameter values generate ratios of maximum to
minimum permeability of up to O(100).

3. Results
As was done in part 1 for homogeneous diplacements, the basic features and mech-

anisms dominating heterogeneous miscible displacements will first be illustrated and
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Figure 1. Reference case: Pe = 500, G = 1, R = 2, A = 0.5, s = 0.5, and l = 0.1. The concentration
field is shown at times t = 0, 0.2, 0.35, 0.5, 0.8, 0.954. The heterogeneity leads to the early appearance
of several fingers. While overall the displacement proceeds faster in the upper half of the domain,
the narrow, dominant gravity tongue of the homogeneous flow (cf. figure 2) does not emerge.

discussed by means of a reference case. In this way, the role of the permeability het-
erogeneities, and the way in which they modulate the interaction between the gravity
and viscosity vorticity components, will be clarified. Subsequently, the dependence of
the flow on some of the dimensionless parameters will be addressed. In the course of
performing test simulations, it was found that for constant Pe-values, the presence of
heterogeneities led to steeper concentration fronts. As a result, we had to lower the
Péclet number for our reference case to 500, instead of the 2000 employed in part 1.

3.1. Reference case

Figure 1 displays the evolution of the displacement for Pe = 500, G = 1, R = 2,
A = 0.5, s = 0.5, and lx = ly = l = 0.1. The corresponding homogeneous case with
an identical initial concentration field is depicted in figure 2. A comparison of these
figures demonstrates that, for the present parameters, the heterogeneity promotes the
early appearance of several fingers. While these are predominantly found in the upper
half of the domain, there is a sizable finger developing near the bottom boundary as
well. By comparing the evolving frontal shape with the features of the permeability
field, we recognize that for the present level of heterogeneity the injected fluid has
a strong tendency to follow paths of high permeability. In addition, the tip splitting
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Figure 2. The homogeneous flow for Pe = 500, G = 1, R = 2, and A = 0.5, at times t = 0.2 and
0.692. In the absence of heterogeneities, fingering evolves much more slowly, and the flow is quickly
dominated by a narrow gravity tongue that propagates along the upper boundary of the domain.

event observed around t = 0.5 is triggered by the local features of the permeability
field as well.

Interestingly, in the heterogeneous displacement the influence of the gravitational
effects does not manifest itself in the form of a gravity tongue propagating along the
upper boundary of the reservoir, as it does in the homogeneous case. While overall
the fingers in the upper half of the domain are observed to grow and propagate
more rapidly than those near the lower border, the most advanced finger is located
approximately one third of the domain height below the upper boundary.

In part 1, the importance of the potential flow field was pointed out, which forms
through the combined effects of the gravitational vorticity and the horizontal borders
of the domain. It was demonstrated that the interaction of the viscous vorticity with
this potential flow field leads to a focusing effect, which results in the narrow, dominant
gravity tongue propagating along the top of the domain. From the comparison of
the displacements in figures 1 and 2 it thus appears that the heterogeneities prevent
this sharp focusing, and instead distribute the effects of gravitational override over
a wider region. An important consequence is that the heterogeneous displacement
breaks through considerably later than in the corresponding homogeneous flow, in
spite of generating pronounced fingers after a much shorter time. Comparisons by
Chen & Meiburg (1998a, b) of neutrally buoyant quarter five-spot displacements had
shown the heterogeneous case to always break through earlier than the homogeneous
flow. This represents a first indication that the role of heterogeneities in miscible
displacements with density override is fundamentally different from neutrally buoyant
flows. The reasons for these differences can be found in the mutual interations of the
various vorticity components.

Figures 3–6 depict the overall vorticity field, as well as the three individual vorticity
components, of the reference flow at times 0.2 and 0.8. The location of the front is
indicated by the iso-concentration contours 0.05 and 0.95. While both the gravity
and viscosity vorticities are limited to the frontal region, their distributions show
distinctly different features. The viscosity vorticity tends to form predominantly
horizontal layers that are aligned with the evolving fingers, i.e. in regions with strong
y-components of the concentration gradient. The gravitational vorticity, on the other
hand, is associated with the x-component of the concentration gradient, i.e. with the
vertical sections of the concentration front. In contrast to the above two vorticity
components, the permeability vorticity is distributed throughout the entire domain
in a somewhat random fashion, with larger amplitudes appearing in areas of higher
velocity magnitudes. Initially, the features of this random distribution are dominated
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Figure 3. Isocontours of the overall vorticity of the flow in figure 1 at times t = 0.2 and 0.8. The
location of the concentration front is indicated by the 0.05 and 0.95 concentration contours. Within
the front, the structures of the vorticity field display a higher level of coherence, while they are more
randomly distributed throughout the rest of the domain.
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Figure 4. Isocontours of the viscosity vorticity of the flow in figure 1 at times t = 0.2 and 0.8. This
vorticity component tends to form layered dipole structures within the evolving fingers.
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Figure 5. Isocontours of the permeability vorticity of the flow in figure 1 at times t = 0.2 and 0.8.
Within the front, this vorticity component strongly interacts with the viscosity vorticity component.
In the process, the two amplify each other (cf. Chen & Meiburg 1998b), which is reflected by the
permeability viscosity. Outside the front, the permeability vorticity is distributed more randomly.
The locally higher amplitudes in the upper part of the domain indicate an overall larger displacement
velocity in this region.

by the interaction of the still nearly uniform flow with the permeability field, so
that they reflect the variance and correlation length of the latter. As the displacement
evolves, significant velocity components are induced by the gravitational and viscosity
effects, with higher velocity values appearing near the upper border of the domain
and inside the fingers. Consequently, the permeability vorticity assumes larger values
in these regions as well. However, it still shows strong fluctuations at a length scale
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Figure 6. Isocontours of the gravity vorticity of the flow in figure 1 at times t = 0.2 and 0.8. This
vorticity component is predominantly of one sign, and it is preferentially located in regions with
large horizontal concentration gradients, i.e. along vertical sections of the front.

reflecting the permeability heterogeneities. These fluctuations will then also be found
in the velocity field associated with the permeability heterogeneities.

It is instructive to track the evolution of the individual circulation components as
a function of time. In analogy to the gravity circulation ΓG, we define the viscous and
permeability circulations, respectively, as

Γν =

∫
S

−R∇ψ · ∇c dS, ΓP =

∫
S

−1

k
∇ψ · ∇k dS. (3.1)

Figure 7(a) shows how these circulation components, as well as their sum, develop as
a function of time. For comparison, figure 7(b) shows the corresponding homogeneous
case. We notice that for the present combination of the governing parameters, the
gravity circulation does not vary much from its homogeneous value. This indicates
that, at least in an integral sense, the gravity circulation plays similar roles in the
homogeneous and heterogeneous displacements. More surprising is the persistently
positive value of the permeability circulation component. In a neutrally buoyant
displacement, one would expect this component to be zero on average. The positive
value of ΓP indicates that the permeability circulation is counteracting the effect of
the gravity circulation, i.e. on average it reduces the tendency of the fluid to propagate
more rapidly along the top of the reservoir, and more slowly along the bottom.

In order to eliminate the possibility that this behaviour is an artifact of the particular
random realization of the permeability field, we carried out an additional simulation
for an identical set of parameters, but a ‘flipped’ permeability field. This flipped
permeability distribution was obtained by exchanging the original heterogeneity values
at y and −y. In neutrally buoyant displacements, the permeability circulation of the
flipped case should be of equal magnitude and opposite sign to the original case.
However, we found that in the flipped case it hovered around zero, cf. figure 7(c).
We hence conclude that there is a systematic trend for the permeability vorticity
to counteract the effects of the gravity vorticity. In order to understand the detailed
reasons for this behaviour, it is best to focus on the dominant term in the permeability
vorticity, i.e. −uky/k. Consider a typical high-permeability channel with a permeability
distribution as sketched in figure 7(d). In a neutrally buoyant flow, the displacing,
less-viscous fluid will flow along the centre of the channel, and it will be symmetrically
distributed around the channel centreline. However, if the displacing fluid is lighter
than the displaced phase, it will on average rise slightly above the centreline. As a
result, the effective viscosity above the channel centreline will be somewhat lower
than below the centreline. This, in turn, leads to slightly larger u-velocities above the
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Figure 7. Viscosity, permeability, gravity and overall circulation as a function of time for (a)
the reference case, (b) the corresponding homogeneous case, (c) the reference case, but with a
flipped permeability field. The tendency of the permeability circulation to assume positive values is
explained in the text, based on the permeability and velocity profiles sketched in (d).

channel centreline than below. Overall, this behaviour has the effect that in the regions
above (below) the channel centreline, where ky < 0 (ky > 0), the magnitude of the
permeability vorticity increases (decreases). Thus the positive (negative) permeability
vorticity values are amplified (damped), so that the permeability circulation on
average is shifted towards positive values. This tendency of the permeabilty vorticity
to counteract the effects of the gravity vorticity is primarily responsible for the delay
in breakthrough caused by the heterogeneities.

3.2. Role of the permeability heterogeneities

In the following, we will analyse the mutual interaction mechanisms among the
different vorticity components and the potential velocity component generated by
the conditions at the top and bottom boundaries, as a function of the governing
dimensionless parameters.

3.2.1. Basic considerations

In order to understand how even moderate permeability heterogeneities are able
to prevent the formation of the gravity tongue, it is interesting to analyse the way in
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Figure 8. Vorticity at time t = 0.3 for Pe = 500, G = 1, R = 2, A = 0.5, l = 0.1, as well as s = 0,
0.2, 0.4, and 0.8. Increasing levels of heterogeneity are seen to break up the evolving vorticity layer
at the underside of the gravity tongue, thereby defocusing the interaction between the viscosity
vorticity on one hand, and the gravity vorticity in combination with the related potential velocity
field on the other.

which the permeability vorticity affects the interaction between the viscosity vorticity
and the gravity vorticity, as well as the related potential velocity field. The random
fluctuations in the vorticity and velocity field due to the heterogeneity prevent the
formation of the strong, uninterrupted vorticity layer along the upper section of the
front that was found to be associated with the focusing effect in part 1. Instead,
the emerging vorticity layer is broken up by the permeability heterogeneities. This
breakup is clearly demonstrated by figure 8, which depicts the overall vorticity field
at identical times for different levels of heterogeneity. At the same time, the mutual
interaction of permeability and viscosity vorticity encourages a fingering process that
is more uniformly distributed along the entire front. Taken together, these mechanisms
result in the ‘defocusing’ of the interaction between the viscous vorticity on one hand
and the gravitational vorticity in combination with the related potential velocity field
on the other.

3.2.2. Influence of the variance

Figure 9 displays the concentration front at the time of breakthrough for the
same parameter values as in the reference case, except that s = 0, 0.2, 0.4, and
0.8, respectively. For s = 0.2, we still notice a strong similarity of the front to the
homogeneous case. Obviously, this low level of heterogeneity does not prevent the
formation of a pronounced, narrow gravity tongue propagating along the upper
border of the domain, as a result of the focusing mechanism described in part 1. At
the same time, the fingers below the gravity tongue have evolved farther than in the
homogeneous case, apparently encouraged in their growth by the mild heterogeneities.
This mutual amplification of the viscosity and permeability vorticity components, as
previously explained by Chen & Meiburg (1998b), leads to a more uniform fingering
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Figure 9. Concentration front at the time of breakthrough for Pe = 500, G = 1, R = 2, A = 0.5,
l = 0.1, and s = 0, 0.2, 0.4, and 0.8, respectively. Intermediate values of the heterogeneity variance s
lead to the latest breakthrough times, i.e., to the highest recovery rates.
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Figure 10. Breakthrough recovery as a function of the heterogeneity level s for Pe = 500, G = 1,
R = 2, A = 0.5, and l = 0.1. Optimal recovery is obtained for intermediate values. For lower values
of s, the tendency to form a gravity tongue leads to an early breakthrough, while for higher values
the same outcome is achieved by the emergence of a dominant, narrow channel of less-viscous fluid.

across the front, and thereby to a slowdown of the gravity tongue, and consequently
a delay of the breakthrough, compared to the homogeneous case. As s is further
increased to 0.4, this feedback loop between viscosity and permeability vorticity gains
in strength, and it dominates over the focusing mechanism, so that a pronounced
gravity tongue no longer emerges. At the even larger values of s = 0.5 (the reference
case, cf. figure 1) and 0.8, the mutual amplification between these two vorticity
components is sufficiently strong for one or two fingers to quickly dominate the entire
flow field, suppress the growth of other fingers, and lead to an early breakthrough.

The above series of simulations shows that, as far as the breakthrough recovery is
concerned, there exists an optimal heterogeneity level at which the tendency to form a
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Figure 11. Concentration front at the time of breakthrough for Pe = 500, G = 1, R = 2, A = 0.5,
s = 0.5, and l = 0.2. For l = 0.1, these parameter values had not shown a gravity tongue. The
fact that a gravity tongue appears for l = 0.2 indicates that the mutual amplification of viscosity
and permeability vorticity is not as pronounced for the larger correlation length. As a result, the
tendency towards forming a gravity tongue wins over that towards forming narrow, low viscosity
flow channels in the interior of the domain.

gravity tongue (as a result of the interaction of the viscous vorticity component with
the gravitational component and the associated potential velocity field) is just balanced
by the tendency to form narrow channels of the less-viscous fluid (due to the mutual
amplification of the viscous and permeability vorticity components). Deviations from
this optimal s-value result in one of these mechanisms dominating over the other
one, with the outcome of a reduced breakthrough time. The breakthrough recovery
as a function of s shown in figure 10 hence has a clear maximum for intermediate
values. This finding is in complete contrast to our earlier observations for neutrally
buoyant displacements, where the breakthrough recovery declined monotonically with
increasing values of the variance. In this context, it is necessary to recall that part 1 had
shown the aspect ratio A to be an important parameter in determining whether or not
a gravity tongue will emerge. Specifically, longer domains with larger flow times were
more likely to lead to the formation of a gravity tongue. As a result, it is to be expected
that the optimal s-value will depend on the aspect ratio as well. A quantitative analysis
of this dependence has not been performed within the present investigation.

3.2.3. Influence of the correlation length

Previous investigations of heterogeneous, neutrally buoyant, rectilinear (Tan &
Homsy 1992) and quarter five-spot flows (Chen & Meiburg 1998b) demonstrated that
the viscosity and permeability vorticities interact most strongly when the associated
length scales are comparable. This optimal coupling between the viscosity and perme-
ability vorticity components was termed a resonance phenomenon by Tan & Homsy.
Consequently, since the optimal value of s is determined by the balance between the
tendency to form a gravity tongue on one hand, and the coupled effects of permeability
and viscosity vorticity on the other, we expect the heterogeneity variance associated
with the highest breakthrough recovery to vary as a function of the correlation length
l. This is confirmed by figure 11, which shows a displacement for the same parameter
values as the reference case, except that l = 0.2. We observe the emergence of a
gravity tongue even at this comparatively large s-value, for which the channelling
tendency had dominated the l = 0.1 case. The flow is characterized by fewer and
wider structures as a result of the increased correlation length. At the opposite end of
the spectrum, i.e. for values of l that are considerably smaller than the diffusive length
scale of the front, we expect to observe the formation of a gravity tongue as well,
since such a medium appears homogeneous to the flow (Chen & Meiburg 1998b).
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Figure 12. Concentration front at the time of breakthrough for Pe = 500, G = 1, R = 2, A = 0.5,
s = 0.5, and l = 0.02. Even for this small correlation length, a gravity tongue does not form, as
there is still a substantial interaction between the permeability and viscosity vorticity components.

From the above, it thus is obvious that the dependence of the breakthrough
recovery on the correlation length in two-dimensional rectilinear displacements with
density differences is diametrically opposed to that observed in neutrally buoyant flows
(Tan & Homsy 1992; Chen & Meiburg 1998b). For the latter, intermediate correlation
lengths resulted in the earliest breakthrough, as a consequence of the above mentioned
resonance mechanism. In the presence of density differences, however, a gravity tongue
will form both for very small and very large values of l, thereby resulting in an early
breakthrough. Only for intermediate l-values can the interaction between viscous and
permeability vorticity be sufficiently strong to suppress the formation of this tongue,
so that breakthrough will be delayed.

Figure 12 shows that a correlation length of l = 0.02 apparently is not yet in the
asymptotic range where the medium appears to be homogeneous to the displacement,
since a clear gravity tongue does not yet form. The reason for this behaviour is that
even at this small correlation length, there still is a substantial level of interaction
between the viscosity and permeability vorticities. This may be somewhat surprising,
considering the much larger ‘natural’ length scale of the viscous fingers observed
for these parameters in the homogeneous case (figure 2). However, it is to be kept
in mind that the specific numerical values at which all of the above findings are
made may vary somewhat with the particular random realization of the heterogeneity
distribution. In other words, one particular distribution may favour the formation of
a gravity tongue, while another one may discourage it. This point will be addressed
in some more detail below. For this reason, all of the simulations for l = 0.1 had
used identical heterogeneity distributions (with varying amplitudes), so that the above
observations would not be obscured by the variations in the random distributions.

3.2.4. Different random realizations

In order to evaluate the effects of differences between individual random realizations
of the heterogeneity distribution, we carried out several pairs of simulations in which
all parameters including the initial concentration distribution were held constant. The
only difference is that one simulation employs the ‘original’ heterogeneity distribution,
while the other one uses the ‘flipped’ distribution, described above. Figure 13 depicts
such a pair of simulations for the parameter values Pe = 500, G = 2, R = 2, A = 0.5,
s = 0.8, and l = 0.1. Substantial differences between the two displacements are visible.
In particular, in one flow the breakthrough is caused by a gravity tongue, while in the
other one it is not. The breakthrough recovery is more than one-third higher in the
latter case. Obviously, for this relatively high s-value, the differences between different
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Figure 13. Pe = 500, G = 2, R = 2, A = 0.5, s = 0.8, and l = 0.1: comparison at breakthrough
of the respective displacements for the ‘original’ and ‘flipped’ heterogeneity distributions. For these
large levels of heterogeneity, substantial differences can be obtained for different heterogeneity
distributions characterized by the same global values of l and s.
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Figure 14. Concentration field for Pe = 500, G = 0, R = 2, A = 0.5, s = 0.5, and l = 0.1 at times
t = 0.1, 0.2, 0.45, 0.6, 0.8, and 1.05. In the absence of density differences, the displacement proceeds
at roughly equal rates in the upper and lower sections of the domain.

random realizations are quite pronounced. These differences are expected to be much
milder for lower levels of heterogeneity.

3.3. Influence of gravity parameter G

In order to elucidate the influence of the gravity parameter, we conducted a simulation
for the same parameters as in the reference case, except that G = 0, see figure
14. Initially, the concentration front develops quite similarly to the reference case.
However, the fingers near the top grow somewhat more slowly, and the ones near
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Figure 15. Concentration field for Pe = 500, G = 2, R = 2, A = 0.5, s = 0.5, and l = 0.1 at
times t = 0.6 and 0.814. At this higher density contrast, a gravity tongue evolves even in a strongly
heterogeneous medium.

the bottom slightly faster, suggesting that in the reference case gravity led to an
effective override by redirecting displacing fluid into the upper half of the domain.
This observation is further confirmed by the case G = 2 shown in figure 15. Here the
fingering develops even more rapidly in the upper half of the domain. In addition,
during the late stages a dominant gravity tongue emerges along the upper boundary.
This indicates that a certain level of heterogeneity is able to prevent the formation of
a narrow gravity tongue only for G-values up to a certain level. If gravitational effects
are sufficiently strong, a dominant gravity tongue will form even in an environment
characterized by more pronounced heterogeneities. Consequently, the above findings
regarding the optimal s-value are expected to change quantitatively with G. However,
the evaluation of this dependence is beyond the scope of the present investigation.

3.3.1. Anisotropic heterogeneity

In order to find out the degree to which the above observations are affected by
anisotropy, we carried out a series of simulations for lx = 0.2 and ly = 0.05, see figure
16. For all other parameter values equal to the reference case, i.e. Pe = 500, G = 1,
R = 2, A = 0.5, and s = 0.5, the concentration contours at different times are shown
in figure 17. About the same number of fingers as in the reference case is seen to
develop, but they are somewhat narrower and longer. This reflects the ‘aspect ratio’
of the heterogeneity distribution, which enhances the fluid flow in the streamwise
direction, while inhibiting transport in the transverse direction, thereby leading to
earlier breakthrough. The ability of heterogeneity anisotropy to favour one transport
direction at the expense of another should affect the relative balance between the
tendencies towards channelling (which involves mostly streamwise transport) and
towards forming a gravity tongue (this requires a certain amount of transverse
transport). As a result, the value of smax resulting in maximum recovery is expected
to change as a function of the degree of anisotropy. However, as was seen above,
changing the length scales in order to generate this anisotropy affects the overall nature
of the displacement process in several different ways, e.g. depending on whether the
parameter values are close to resonant conditions or not. As a result, the influence of
anisotropy on smax is expected to be a function of the other parameters as well.

4. Conclusions
In the light of earlier findings for neutrally buoyant flows (Tan & Homsy 1992;

Chen & Meiburg 1998b), permeability heterogeneities lead to some very different
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Figure 16. Anisotropic permeability field for lx = 0.2 and ly = 0.05.
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Figure 17. Concentration contours for Pe = 500, G = 1, R = 2, A = 0.5, and s = 0.5, as well as
the anisotropic correlation lengths of lx = 0.2 and ly = 0.05. Slightly longer and narrower fingers
than in the reference case are seen to develop, as the anisotropy enhances (inhibits) transport in the
streamwise (transverse) direction.

effects in rectilinear displacements with density variations. The main reason for some
of these unexpected findings lies in the way the heterogeneities interact with the
gravity tongue observed in homogeneous flows (part 1). This gravity tongue was
seen to be the result of a ‘focusing’ mechanism generated by the combined effects
of the unfavourable viscosity gradient and the potential velocity field generated by
the horizontal boundaries. The present simulations show that the vorticity associated
with permeability heterogeneities systematically counteracts the effects of gravity
vorticity by contributing circulation of the opposite sign. In addition, the somewhat
randomly arranged vorticity dipoles associated with the heterogeneities result in a



Miscible rectilinear displacements with gravity. Part 2 275

certain amount of ‘defocusing’, which tends to prevent the formation of the gravity
tongue. Keeping in mind earlier findings for neutrally buoyant displacements (Tan
& Homsy 1992; Chen & Meiburg 1998b), the level of heterogeneity affects the
breakthrough recovery of flows with density contrasts in a very different fashion. While
for moderate heterogeneities the gravity tongue leads an to early breakthrough, the
same result is accomplished for large heterogeneities by the channelling mechanism. At
intermediate values of s, these mechanisms weaken each other, and the breakthrough
recovery attains a maximum. This is in contrast to neutrally buoyant flows, where the
breakthrough recovery usually is seen to decline monotonically with increasing levels
of heterogeneity. In a similar fashion, the role of the correlation length in determining
the breakthrough efficiency in a displacement with a density contrast is diametrically
opposed to that in neutrally buoyant flows. For these, the recovery is typically seen
to be minimal at intermediate correlation lengths, due to the resonant interaction
between viscosity and permeability vorticities. For variable-density displacements, on
the other hand, a gravity tongue tends to form for both very small and very large
values of this length, so that the recovery reaches a maximum at intermediate values.
The very different roles played by the correlation length and variance, depending
on whether the displacement is neutrally buoyant or not, indicate that interesting
vorticity dynamics is to be expected in three-dimensional displacements. Within
horizontal planes, the roles of l and s may be more similar to neutrally buoyant flows,
whereas in vertical planes, density effects might dominate.

Both the correlation length as well as the variance of the heterogeneity field were
seen to affect the nature of the displacements in several different ways, depending on
the values of the remaining dimensionless parameters, due to their separate influences
on the individual, mutually interacting mechanisms. As a result, their overall effects on
such global quantities as the breakthrough recovery cannot be parameterized easily.
In addition, there are substantial differences between individual random realizations
of heterogeneity fields characterized by identical correlation lengths and variances.
This is particularly true for large values of s, with the reason being that for the
present simulations the domain length is a relatively small multiple of the correlation
length. Consequently, it would be of interest to extend the present investigation either
by considering much smaller correlation lengths, or by averaging over many random
realizations with identical variances and correlation lengths.
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